Megger
Megger
TCI
TCI
Rayzon
Rayzon
Home » News » A new hybrid material designed for carbon capturing

A new hybrid material designed for carbon capturing

By April 12, 2022 1:45 pm IST

A new hybrid material designed for carbon capturing
.

A group of scientists have computationally designed a hybrid material which can absorb greenhouse gas methane, converting it to clean Hydrogen and also simulated a process of capturing carbon dioxide in-situ and converting it to high purity hydrogen from non-fuel grade bioethanol. They have also designed a facility that can test such materials and help further carbon capture research at the institute.

Given the global warming potential of greenhouse gases, scientists are trying to explore innovative methods of absorbing these gases and converting them to useful substances. New materials that can play dual role of absorption as well as conversion is the new challenge area for scientist in carbon capture innovation.

Responding to the challenge, in a series of researches on carbon capture and utilisation scientists from Indian Institute of Chemical Technology (IICT), Hyderabad have not only computationally designed a hybrid material that can capture methane and also act as catalyst to convert it to high purity hydrogen, but also simulated and designed a process for in situ capture of carbon dioxide and its conversion to high purity hydrogen from non-fuel grade bioethanol through a mechanism called the optimised intensified chemical looping reforming. The later research has been published in the Elsevier journal Chemical Engineering and Processing.

Advertising

EPR Android App Banner

2 production based on the modelling and preliminary experimental studies.

The FBR facility has been successfully commissioned recently in Jan 2022 at CSIR-IICT, Hyderabad, under a Mission Innovation Project supported by Department of Science and Technology to IICT Hyderabad. It is unique and available for the first time in the country to test the performance of dual functional materials for SESMR in fluidised bed reactor system. SESMR offers specific advantages of in-situ CO2 removal through sorbents and thereby overcomes the equilibrium limitations of steam reforming and leads to high purity H2 production.

Potential dual functional materials identified from theoretical predictions are now being synthesised and simultaneously FBR operating conditions are being optimised for existing sorbent/catalyst materials for meeting increasing challenges of carbon capture and utilisation and associated research.

Cookie Consent

We use cookies to personalize your experience. By continuing to visit this website you agree to our Terms & Conditions, Privacy Policy and Cookie Policy.

Nirmal Wires
Nirmal Wires
Android App
Android App

Events

Power Gen
Power Gen
India Energy Storage Week 2025
India Energy Storage Week 2025
GOTS 2025
GOTS 2025
Renewable Energy India (REI)
Renewable Energy India (REI)
BEDIC
BEDIC
MEPIC
MEPIC

Our Sponsors

Geda
Geda
Kimbal
Kimbal
BCH India
BCH India
Kp Group
Kp Group
Voltaredox
Voltaredox
Rayzon Solar Pvt Ltd
Rayzon Solar Pvt Ltd
Om Technical Solutions
Om Technical Solutions
Apar Industries
Apar Industries
Ravin Group
Ravin Group
Meco Instruments Pvt Ltd
Meco Instruments Pvt Ltd
Balaji Switchgears
Balaji Switchgears
Gloster Cables Limited
Gloster Cables Limited
HPL Electric Power
HPL Electric Power
K-Lite Industries
K-Lite Industries
Newtech Switchgear
Newtech Switchgear
Elev8 Lift
Elev8 Lift
flir system
flir system
ET Transformers
ET Transformers
Polycab
Polycab
Aeron Composite Pvt Ltd
Aeron Composite Pvt Ltd
OBO Engineered Cable Trays
OBO Engineered Cable Trays
Siemens Energy
Siemens Energy
Radicon Powerbuild
Radicon Powerbuild
MENNEKES Electric India
MENNEKES Electric India
PRAMA HIKVISION INDIA
PRAMA HIKVISION INDIA
TDK Electronics
TDK Electronics