Home » Power Brand » Efficiency in Machine Safety

Efficiency in Machine Safety

September 25, 2021 3:37 pm

Efficiency in Machine Safety
.

The primary goal while designing a machine has always been to make its automation process as efficient and cost-effective as possible to complete a task. Now safety controls, with their more stringent requirements, are being held to similar expectations when being integrated into the machine controls. Safety control devices have evolved over the years and now play a crucial role in the interaction of man and machine.

What was once an afterthought, safety aspects can be seen as being implemented during the design phase by machine builders, and added to older existing machines by the end-users. The challenge with implementing safety at any stage of a machine lifecycle is making sure the safety system is effective and efficient as possible.

The automation process behind the scenes of a mid to large size machine can be intricate while providing simple means to operate the machine via a Human Machine Interface (HMI). This allows a complex automation process to be seamless and user friendly. Safety too can be seamless and user friendly. The first approach would be to minimise hazards by design. If feasible for the machine and its application this may reduce the cost on safety as the required safety components may be less.

If, as in many situations, a hazard cannot be reduced or eliminated purely by design, or if further action is required, then safety devices can be integrated. These could include guard monitoring devices that will prevent a machine cycle while a guard is open, or presence sensing devices such as light curtains or safety mats that will detect an operator.

Schmersal-1Once a risk analysis is completed to determine what hazards need to be guarded and to which degree of circuit reliability, the question then turns to how to integrate the safety efficiently? As stated earlier, the automation design may be complex throughout the machine with many components requiring communication with each other to assure the process run smoothly. In many instances this communication takes place in the form of a network protocol that allows data packages to be exchanged throughout the system and can even be visually displayed on a control panel. Safety devices have evolved where they too can be placed on such a network. Knowing immediate information such as which guard door is open, which E-STOP has been actuated, and which safety device has faulted out can drastically decrease downtime and thus increase productivity. An added advantage to most electronic safety devices is that they can be wired in series without reducing the integrity of the safety circuit.

Many manufactures of safety devices have the ability to allow their devices to communicate on dedicated protocols such as PROFINET, EtherNet, CANopen and DeviceNet, just to name a few. In some instances a manufacturer may require a gateway that will convert their proprietary form of communication to one of the common industrial protocols, allowing a uniform data stream of safe and non-safe information. 

Another available protocol to use is the Actuator Sensor Interface, or AS-i protocol. One of AS-i key features is that this protocol is an open language allowing machine builders and end users to easily mix and match different manufacturers AS-I devices and components to meet their various application needs. Another advantage of an AS-I system is its easy wiring which only requires a 4 pin snap-on along any point of its flat cable, greatly reducing the costs in installation time.

With these types of technology, safety components no longer need to be completely isolated from the automation system. As an interlock device triggers a safe shutdown it can send information through a PLC to bring a machine tool to a home position, all while showing its activity in a graphical representation on an easy-to-read screen at an operator station.

The increased efficiency in trouble-shooting can easily be seen when this technology is compared with that of conventional electromechanical devices on mid to large-sized machines. When using electromechanical devices, each access guard needs to be examined individually to determine which is preventing a machine restart. Use of some of the advanced electronic safety devices can quickly and easily inform the operator of a specific fault through integrated LED lights and serial diagnostic signals.

Properly designed and installed safety systems within a machine are no longer seen as a hindrance to the overall process. Education in safety provides a greater understanding and appreciation for its use and technological advancements makes safety implementation easier. The current capabilities of safety devices allow them to be used both effectively and efficiently.

Author:

Devin Murray

Functional Safety Engineer

TÜV Rheinland ID-No. 4274/11 Machinery

Schmersal USA

Image credits:

K.A. Schmersal GmbH & Co. KG

© 2015

SCHMERSAL INDIA PVT LTD

Plot No – G-7/1, Ranjangaon MIDC,

Tal. – Shirur, Dist. – Pune 412 220.

+91-9607800255 | SWankhede@schmersal.com

Cookie Consent

We use cookies to personalize your experience. By continuing to visit this website you agree to our Terms & Conditions, Privacy Policy and Cookie Policy.

Tags: Power Brand
Power Talk
Webinar
Webinar
Android App
Android App
EPR eMagazine May 2024
EPR eMagazine April 2024
EPR eMagazine April 2024

Events

International Geotechnical Innovation Conference
International Geotechnical Innovation Conference
EL Asia
EL Asia
Global Energy Digitalisation Conclave
Global Energy Digitalisation Conclave
India Energy Storage Week
India Energy Storage Week
World battery and energy storage industry expo
World battery and energy storage industry expo
Green Hydrogen Summit
Green Hydrogen Summit
Powergen
Powergen
Windergy
Windergy

Our Sponsors

Rayzon Solar Pvt Ltd
Rayzon Solar Pvt Ltd
CSE Power
CSE Power
Calter
Calter
Lawson Fuses
Lawson Fuses
Kusam Meco
Kusam Meco
Apar Industries
Apar Industries
Easun MR Tap Changers
Easun MR Tap Changers
Maco Corporation India Pvt Ltd
Maco Corporation India Pvt Ltd
Bask Energies
Bask Energies
HPL Electric Power
HPL Electric Power
Mecc-Alte India
Mecc-Alte India
flir system
flir system
Triveni Turbine ltd
Triveni Turbine ltd
Innovatek
Innovatek
Aeron Composite Pvt Ltd
Aeron Composite Pvt Ltd
Powerica LTD
Powerica LTD
Electrotherm
Electrotherm
MENNEKES Electric India
MENNEKES Electric India
Om Technical Solutions
Om Technical Solutions
PRAMA HIKVISION INDIA
PRAMA HIKVISION INDIA